open all | close all

4.2.3. Элементы пластин, объемные элементы и элементы упругого основания

Треугольный и прямоугольный оболочечный элементы, треугольный и прямоугольный элементы упругого основания, тетраэдрический и призматический конечные элементы формируются по одинаковым правилам. Отличие состоит только в задании ориентации элементов. Дело в том, что напряжения в треугольных и прямоугольных конечных элементах вычисляются в их локальной системе координат, а в тетраэдрических и призматических - в глобальной. Поэтому для треугольных и прямоугольных конечных элементов предусмотрен специальный механизм изменения их ориентации.

Программа фактически оперирует с четырьмя типами пластинчатых элементов, различающихся по числу степеней свободы в узле. В зависимости от типа системы используется соответствующий тип конечного элемента:

Для изгибаемых элементов может быть учтено продольное напряженное состояние, что позволяет вовлекать их в расчеты по деформированной схеме и на устойчивость. Если для элемента пластины задать явно клэффициенты постели С1 и С2, то элемент автоматически превратится в элемент на двухпараметровом упругом основании (если задан только коэффициент С1, то основание превращается в винклерово).

Ниже, на примере плоской прямоугольной консольно закрепленной пластины, находящейся под действием А) равномерно распределенной по площади нагрузки, действующей в плоскости пластины, и В) сосредоточенной силы, приложенной в точке С, показано влияние размера конечноэлементной сетки на точность результата. Размеры пластины 8х16м, толщина - 0,01м, модуль Юнга - 2.0594 1011Н/м2, коэффициент Пуассона - 0.3. Во всех примерах отношение m:n равно 2.

Тетраэдрический и призматический конечные элементы имеют по три перемещательные степени свободы (x,y,z) в узле и могут быть использованы только для систем Пространственная ферма и Пространственная рама.

* Типы систем:

  1. Плоская с двумя степенями свободы в узле (деформация в плоскости);
  2. Плоская с тремя степенями свободы в узле (деформация в плоскости);
  3. Плоская с тремя степенями свободы в узле (деформация из плоскости);
  4. Пространственная с тремя степенями свободы в узле;
  5. Пространственная с шестью степенями свободы в узле.